0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Универсальный преобразователь однофазного тока в трёхфазный

Сделай Сам (Знание) 2003-04, страница 91

использовать в случаях перестановки «горшка» с цветком на другое место. Не забудьте только о необходимости наличия дренажного отверстия на дне «горшка».

Универсальный п реоб разовател ь однофазного тока в трехфазный_

В настоящее время многих любителей конструирования, владельцев личных подсобных хозяйств интересуют вопросы применения трехфазных асинхронн ых двигателей в однофазной сети. Асинхронные двигатели конструктивно очень просты и неприхотливы в эксплуатации, что и обеспечивает их наибольшее распространение среди потребителей. Вместе с тем эксплуатация трехфазных двигателей в однофазной сети связана с рядом трудностей. Как известно из курса электротехники, трехфазный переменный электрический ток порождает вращающееся магнитное поле, которое создает вращающий момент на валу электродвигателя. Однофазный ток создает пульсирующее поле, не способное привести ротор двигателя во вращение, —такой ток необходимо преобразовать в многофазный и только потом подавать на электродвигатель. На сегодня известно большое количество способов преобразования однофазного тока в многофазный, но все они, как правило, имеют ряд недостатков:

— трудно получить «чистый» трехфазный ток (добиться разности фаз 120° между фазами). В большинстве случаев получают двухфазный ток с разностью фаз Д = 90°. Эксплуатация на таком токе ведет к значительной потере мощности электродвигателя. Теоретически, такие потери составляют 30—40%, в реальности — значительно больше (50—60%). Например, от трехфазного электродвигателя мощностью 2 кВт в однофазной сети может остаться 800 Вт;

— преобразователи однофазного тока не обладают универсальностью. Они создаются под конкретный электродвигатель, имеют ограничения по мощности и т. д. Вместе с тем, существуют определенные типы трехфазных электродвигателей, которые не запускаются в однофазной сети всеми известными методами (см. Ада-

менко А. и др. Однофазные кс нденсатор-ные электродвигатели. Сб. «В помощь радиолюбителю», 1975, № 49, с. 69-77);

—наличие реактивных элементов (как правило, конденсаторов) для пуска и работы электродвигателя создает целый ряд эксплуатационных неудобств, делает конструкцию громоздкой и не всегда безопасной в быту и т.д.

Предлагаемый универсальный преобразователь однофазного тока в трехфазный, построенный на базе обычного трехфазного электромотора, полностью лишен этих недостатков:

— способен вырабатывать «полноценный» трехфазный ток, в т.ч. напряжением 380 В;

— нет потерь в мощности двигателя;

— пригоден для любого типа электродвигателей и любой мощности (мощность ограничена возможностями электросети в пределах 7 кВт);

— конструктивно очень прост. Человек, владеющий навыками электротехники в объеме средней школы, сделает его в течение 1—2 часов. Для его построения требуется трехфазный асинхронный двигатель с короткозамк-нутым ротором мощностью 3—4 кВт, один конденсатор емкостью 40-60 мкФ и набор монтажного провода. Трехфазный двигатель никакой переделки не требует;

— собственное потребление энергии минимально. Преобразователь автора этой статьи мощностью 4 кВт потребляет на холостом ходу примерно 200 Вт.

Рассмотрим основные принципы, положенные в основу работы преобразователя. Для этого вспомним устройство и работу синхронного генератора трехфазного тока. Он состоит из ротора и статора. Три статорных обмотки сдвинуты в пространстве на угол 120°. С помощью внешнего источника энергии ротор генератора приводится во вращение, и его изменяющийся магнитный поток наводит в обмотках статора ЭДС индукции. Если обмотки статора соединить с потребителем, в цепи появится трехфазный электрический ток. Для получения однофазного тока используют выводы от одной статорной обмотки трехфазного генератора. Такой ток чаще всего используют для бытовых нужд и личного потребления. Попробуем теперь, имея одну фазу, восстановить оставшиеся две. Возьмем обычный трехфазный асинхронный электродвигатель с короткозамкнутым ротором. У него также имеются ротор и три статорные обмотки, сдвинутые в пространстве на угол 120°. Подадим на одну из обмоток однофазный ток. По указанным вы-

Универсальный преобразователь однофазного тока в трёхфазный

Универсальный преобразователь однофазного тока в трёхфазный

В статье освещаются вопросы эксплуатации трёхфазных асинхронных двигателей в однофазных сетях. Предлагаемое устройство позволяет снять все проблемы, возникающие при этом.

В настоящее время многих любителей конструирования, владельцев личных подсобных хозяйств интересуют вопросы применения трёхфазных асинхронных двигателей в однофазной сети. Асинхронные двигатели конструктивно очень просты и неприхотливы в эксплуатации, что и обеспечивает их наибольшее распространение среди потребителей. Вместе с тем, эксплуатация трёхфазных двигателей в однофазной сети связана с рядом трудностей. Как известно из курса электротехники, трёхфазный переменный электрический ток порождает вращающееся магнитное поле, которое создаёт вращающий момент на валу электродвигателя. Однофазный ток создаёт пульсирующее поле, не способное привести ротор двигателя во вращение — такой ток необходимо преобразовать в многофазный и только потом подавать на электродвигатель. На сегодня известно большое количество способов преобразования однофазного тока в многофазный, но все они, как правило, имеют ряд недостатков:

— трудно получить «чистый» трёхфазный ток (добиться разности фаз 120° между фазами). В большинстве случаев получают двухфазный ток с разностью фаз Δφ=90°. Эксплуатация на таком токе ведет к значительной потере мощности электродвигателя. Теоретически, такие потери составляют 30-40%, в реальности — значительно больше (50-60%). Например, от трёхфазного электродвигателя мощностью 2 кВт в однофазной сети может остаться 800 Вт;
— преобразователи однофазного тока не обладают универсальностью. Они создаются под конкретный электродвигатель, имеют ограничения по мощности и т. д. Вместе с тем, существуют определённые типы трёхфазных электродвигателей, которые не запускаются в однофазной сети всеми известными методами (см. Адаменко А.и д.р. Однофазные конденсаторные электродвигатели. Сб. «В помощь радиолюбителю», 1975, № 49, с.69-77);
— наличие реактивных элементов (как правило, конденсаторов) для пуска и работы электродвигателя создает целый ряд эксплуатационных неудобств, делает конструкцию громоздкой и не всегда безопасной в быту и т.д.

Читать еще:  Трехполосная полочная акустическая система WTM813 на динамиках Dayton от Алексея Александрова

Предлагаемый универсальный преобразователь однофазного тока в трёхфазный, построенный на базе обычного трёхфазного электромотора, полностью лишён этих недостатков:
— способен вырабатывать «полноценный» трёхфазный ток, в т.ч. напряжением 380 В;
— нет потерь в мощности двигателя;
— пригоден для любого типа электродвигателей и любой мощности (мощность ограничена возможностями электросети в пределах 7 кВт);
— конструктивно очень прост. Человек, владеющий навыками электротехники в объёме средней школы, сделает его в течение 1-2 часов. Для — его построения требуется трёхфазный асинхронный двигатель с короткозамкнутым ротором мощностью 3-4 кВт, один конденсатор ёмкостью 40-60 мкФ и набор монтажного провода. Трёхфазный двигатель никакой переделки не требует;

— собственное потребление энергии минимально. Преобразователь автора этой статьи мощностью 4 кВт потребляет на холостом ходу примерно 200 Вт.

Рассмотрим основные принципы, положенные в основу работы преобразователя. Для этого вспомним устройство и работу синхронного генератора трёхфазного тока. Он состоит из ротора и статора. Три статорных обмотки сдвинуты в пространстве на угол 120°. С помощью внешнего источника энергии ротор генератора приводится во вращение, и его изменяющийся магнитный поток наводит в обмотках статора ЭДС индукции. Если обмотки статора соединить с потребителем, в цепи появится трёхфазный электрический ток. Для получения однофазного тока используют выводы от одной статорной обмотки трёхфазного генератора. Такой ток, чаще всего, используют для бытовых нужд и личного потребления.

Попробуем теперь, имея одну фазу, восстановить оставшиеся две. Возьмём обычный трехфазный асинхронный электродвигатель с короткозамкнутым ротором. У него также имеются ротор и три статорные обмотки, сдвинутые в пространстве на угол 120°. Подадим на одну из обмоток однофазный ток. По указанным выше причинам, ротор такого двигателя не сможет сам начать вращение. Но, если посторонней силой, сообщить ему первоначальный вращающийся момент, то он будет вращаться дальше за счёт переменного однофазного напряжения в одной обмотке. (Строгое научное объяснение этого факта я опускаю, т.к. оно широко известно из курса электротехники). Вращающийся ротор своим магнитным потоком навёдет ЭДС индукции в двух других статорных обмотках, т.е. восстановит недостающие две фазы. Таким образом, мы получим что-то вроде вращающегося трёхфазного трансформатора. Одна из обмоток двигателя, на которую подаётся переменный однофазный ток из сети, становится возбуждающей обмоткой, формирующей магнитное поле вращающегося ротора, а он, в свою очередь, возбуждает переменное напряжение в оставшихся обмотках.

Полученное напряжение будет трёхфазным, т.к. это обусловлено самой конструкцией электродвигателя. Напряжение на двух оставшихся обмотках будет несколько меньше напряжения на возбуждающей обмотке (за счёт потерь при преобразовании). Эта разница составляет, примерно 10-15 В и определяется конструктивными особенностями электродвигателя. Блок-схема универсального преобразователя показана на рис.1.

Как заставить ротор преобразователя вращаться от однофазного напряжения? Таких способов существует несколько. Я рекомендую использовать широко распространённую схему с пусковым конденсатором (см. рис.2).

Рис.2 Схема универсального преобразователя.

Ёмкость конденсатора Сп может быть небольшой, т.к. ротор асинхронного преобразователя приводится во вращение без механической нагрузки на валу. Для преобразователя, построенного на базе асинхронного электродвигателя мощностью 4 кВт (авторский вариант) достаточно конденсатора Сп=60 мкФ. Эксперименты, проведённые с таким преобразователем, дали хорошие результаты, но, вместе с тем, были выявлены некоторые недостатки:
— напряжение 380 В является очень опасным для жизни человека. Чтобы снизить вероятность ЧП, в быту, желательно, использовать линейное напряжение 220 В;
— собственное потребление электроэнергии преобразователем было значительным. Это снижало КПД устройства, особенно в режиме «холостого хода».

Дальнейшая модернизация конструкции позволила избавиться от этих недостатков. Так, в качестве преобразователя автор применял асинхронный 4-киловаттный электродвигатель с 6-полюсной статорной обмоткой (т.н. «тысячник «). Его обмотки включены «звездой» и рассчитаны на линейное напряжение 380 В. Я же подключал их к 220 В (т.е. между «фазой» и «нулём» двигателя было 127 В). Такое подключение показано на рис.3.

Рис.3 Схема преобразователя на «трёхфазное» линейное напряжение 220 В.

Обычно, пусковой конденсатор Сп отключается после того, как преобразователь начнёт работать, но можно и не отключать, т.к. его влияние на работу устройства, в целом, минимально. Легко заметить, что в данном случае получилась «несимметричная звезда» Преобразователь вырабатывает: «фаза» + «фаза» + «ноль». Я такой ток называю «квазитрёхфазный» т.е. «похожий на трёхфазный ток» (см. рис.4).

Рис.4 Векторные диаграммы напряжений вырабатываемые преобразователем.

И, действительно, достоинств у него оказалось не меньше, чем у обычного трёхфазного тока. Он также порождает вращающееся магнитное поле. А, т.к. «рождён» он трёхфазным асинхронным двигателем, то идеально подходит в качестве рабочего тока для трёхфазных асинхронных двигателей. Кроме всего прочего, удалось снизить линейное напряжение до 220 В, а также собственное энергопотребление довести до 200 Вт. Все потребители, подключаемые к такому преобразователю, можно включать как «звездой», так и «треугольником» рис.5.

Читать еще:  Изготавливаем декоративный камень в домашних условиях

Рис.5 Подключение потребителей к преобразователю.

С целью повышения эффективности отдачи преобразователя, можно дополнить его автотрансформатором соответствующей мощности, который включается после преобразователя в одну из фаз. Если у автотрансформатора сделать несколько отводов, то напряжение на какой-либо фазе можно менять, а, стало быть, регулировать мощность подключаемых к преобразователю электромоторов, что хорошо экономит электроэнергию. Например, установленный на крупорушке однокиловаттный трёхфазный электродвигатель, я использую на полную мощность только при помоле твёрдых семян (кукурузы и гороха), а для помола ячменя и пшеницы достаточно 400-500 Вт. Автотрансформатор торроидального типа мощностью ≈5 кВт на статорном железе от сгоревшего электродвигателя мощностью 10 кВт. Обмотка автотрансформатора содержит около 300 витков провода ПЭТВ Ø 2,12 мм с 10 отводами (после каждых 30 витков – отвод). При необходимости, количество витков автотрансформатора можно уточнить по формуле:
W=220·45/S

где S=а×в, (S, см2). (см рис.6).

Чтобы извлечь магнитопровод из корпуса статора, его надо разбить и удалить сгоревшую обмотку. Получится чистый магнитопровод. Его обматывают куском ткани (мешковиной), пропитанной эпоксидным клеем или лаком. Когда клей высохнет, можно наматывать обмотку автотрансформатора. Её мотают в несколько слоёв, равномерно распределяя по всему магнитопроводу. Верхний слой также покрывается тканью, пропитанной слоем эпоксидной смолы. Такая технология обеспечивает надёжную защиту от влаги и достаточную механическую прочность. Конечная схема преобразователя выглядит следующим образом (рис.7).

Рис.7 Схема преобразователя с автотрансформатором.

Хочу добавить, что мой преобразователь используется в личном хозяйстве около 12 лет. От него работают трёхфазные потребители:
– электропилорама, мощностью 2,8 кВт;
– крупорушка, мощностью 1 кВт;
– электроточило, мощностью 400 Вт.
Такой же преобразователь я помог сделать своему коллеге по работе. У него безупречно функционируют трёхфазные:
– электрический бур, мощностью 1 кВт;
– малогабаритная бетономешалка, мощностью 500 Вт;
– крупорушка, мощностью 1,2 кВт;
– электрофуганок, мощностью 0,6 кВт.

Разумеется, трёхфазные электродвигатели от однофазной сети будут потреблять при работе через преобразователь ровно столько энергии, сколько написано в их паспорте (закон сохранения энергии не обманешь!).

В заключение хочу дать несколько практических советов для тех, кто захочет повторить конструкцию преобразователя (и навсегда забыть обо всех проблемах, связанных с эксплуатацией трёхфазных электродвигателей в однофазных сетях):

Мощность электродвигателя, используемого в качестве преобразователя, должна быть больше мощности подключаемого к нему электропривода. Например, если в преобразователе используется электродвигатель мощностью 4 кВт, то мощность подключаемых электродвигателей должна быть меньше или равной 3 кВт;

Практика показала, что преобразователь мощностью 4 кВт может решить все «проблемы» личного хозяйства. К тому же нагрузка на сеть в пределах 2-3 кВт является вполне приемлемой;

Ток, потребляемый преобразователем в рабочем режиме не должен превышать значений паспортного тока для данного типа электродвигателей (в противном случае преобразователь может сгореть);

В качестве электродвигателей-преобразователей лучше использовать «тихоходные» электромоторы (синхронная частота вращения 1000 об/мин и меньше). Они очень легко запускаются, и кратность пускового тока к рабочему у них, как правило, меньше, чем у высокооборотных, а стало быть «мягче» нагрузка на сеть.

Порядок работы с преобразователем должен быть такой: первым запускается преобразователь, затем потребители трёхфазного тока. Выключение осуществляется в обратной последовательности.

В качестве пускового конденсатора Сп можно применять конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Применять электролитические конденсаторы не желательно. Ёмкость пускового конденсатора Сп определяется мощностью преобразователя. Для 4-киловаттных преобразователей она примерно равна 60-80 мкФ Её подбирают экспериментально, начиная с верхней границы:
Сп=2800·Iф/Uс,
где Iф–номинальный фазный ток преобразователя, А,
Uс–напряжение однофазной сети, В.

Литература: Прищеп Л. Г. Учебник сельского электрика. М.: Агропромиздат, 1986.
Бирюков С. Три фазы — без потери мощности.- Радио, 2000, № 7, с. 37–39
Адаменко А. и д.р. Однофазные конденсаторные электродвигатели. Сборник «В помощь радиолюбителю», 1975, № 49, с.69–77.
В. Клейменов. Электродвигатель — преобразователь однофазного напряжения в трехфазное. Радио, 2002, № 1, с.28.
Гуров С. Трехфазное напряжение — это очень просто.- Радио, 2002, № 1, с.29

Статья опубликована в журнале «Сделай сам» 2003, № 4, с.90 – 94.

Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. Инвертор. Схема. Конструкция. Своими руками. Собрать самому.

Схема преобразователя однофазного напряжения в трехфазное. (10+)

Преобразователь однофазного напряжения в трехфазное — Схема

В этой схеме, как и в любой другой, могут быть ошибки. Если Вы их обнаружите, пожалуйста, напишите нам. Подпишитесь на новости, чтобы быть в курсе исправлений и обновлений материала.

Внимание! Сборка прибора требует навыков в области силовой электроники, связана с контактом с высоким напряжением, которое может быть опасным для жизни как самого инженера, так и пользователей прибора. Убедитесь, что Вы обладаете нужной квалификацией.

Схема выполнена на основе импульсного силового источника синусоидального напряжения. Советую ознакомиться с его схемой.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Читать еще:  Услуги по дизайну интерьера в Москве

Эта схема не является трехфазным инвертором, но может быть использована для его разработки. Если вместо корректора коэффициента мощности на вход устройства установить преобразователь 12 или 24 вольта в 600 вольт, который можно получить на основе резонансного инвертора, перестроив его выходное напряжение с 310 на 600 вольт, то будет отличный трехфазный инвертор.

Принципиальная схема преобразователя однофазного напряжения в трехфазное.

Преобразователь выдает трехфазное напряжение хорошей синусоидальной формы 370 В, 1.5 кВт (в сумме на все три фазы). Напряжение 370 В, а не 380, выбрано, исходя из того, что для получения 380 В нужно питать схему постоянным напряжением 620 В. Но силовые ключи и драйверы полумоста на 600 В гораздо более распространены. А снижение питающего напряжения на 3% для большинства приборов значения не имеет.

Схема использует три идентичных блока. Элементы на этих блоках имеют на схеме одинаковые обозначения. Схема рисовалась путем переделки схемы источника синусоидального напряжения. Перенумеровывать элементы у меня не хватило духу. Так что некоторые номера пропущены. Простите меня за это.

C13 — 1 мкФ, R25 — 5.5 кОм, C14 — 0.5 мкФ, R26 — 11 кОм, C15 — 0.25 мкФ, R27 — 22 кОм, C16 — 0.1 мкФ, R25 — 55 кОм.

ККМ — корректор коэффициента мощности. Его схема здесь не приводится. Об этом будет отдельная статья. Корректор коэффициента мощности обычно выполняется по схеме повышающего преобразователя. Так что его не составит труда выполнить на выходное постоянное напряжение 600 В. Оно-то нам и нужно для питания схемы.

М1 — маломощный мост для получения низковольтного напряжения для питания низковольтной схемы преобразователя.

Диоды VD4, VD5, VD6 — выпрямительные диоды на 600В, желательно быстродействующие, но подойдут и 100 нс. Мы используем 1N5406.

Диоды VD1, VD2 — импульсные низковольтные кремниевые диоды, например, детекторные.

Полевые транзисторы VT1, VT2 — полевые транзисторы от 600В, 3А. Подойдут, например, IRFBG 30, или другие.

D5 — операционный усилитель, рассчитанный на работу при однополярном питании 12В, с высоким входным сопротивлением и с возможностью подключения к выходу нагрузки 2 кОм или менее. Хорошо подходит К544УД1, КР544УД1.

D6 — интегральный стабилизатор напряжения (КРЕН) на 12В.

VT5 — Маломощный высоковольтный транзистор на 600 вольт. Он работает только в момент включения схемы. Так что в процессе работы мощность не рассеивает.

VD9 — Стабилитрон 15В.

C11 — 1000мкФ 25В.

R25 — 300кОм 0.5Вт

D1 — Интегральные широтно-импульсно модулирующие (ШИМ) контроллеры. Это 1156ЕУ3 или его импортный аналог UC3823.

Добавление от 27.02.2013 Иностранный производитель контроллеров Texas Instruments преподнес нам удивительно приятный сюрприз. Появились микросхемы UC3823A и UC3823B. У этих контроллеров функции выводов немного не такие, как у UC3823. В схемах для UC3823 они работать не будут. Вывод 11 теперь приобрел совсем другие функции. Чтобы в описанной схеме применить контроллеры с буквенными индексами A и B, нужно вдвое увеличить резисторы R22, исключить резисторы R17 и R18, подвесить (никуда не подключать) ножки 16 и 11 всех трех микросхем. Что касается российских аналогов, то нам читатели пишут, что в разных партиях микросхем разводка разная (что особенно приятно), хотя мы пока новой разводки не встречали.

D3 — Драйверы полумоста. IR2184

R7, R6 — Резисторы по 10кОм. C3, C4 — Конденсаторы по 100нФ.

R10, R11 — Резисторы по 20кОм. C5, C6 — Электролитические конденсаторы по 30 мкФ, 25 вольт.

R8 — 20кОм, R9 — подстроечный резистор 15кОм

R1, R2 — подстроечники по 10кОм

C2, R5 — резистор и конденсатор, задающие частоту работы ШИМ — контроллеров. Их выбираем таким образом, чтобы частота была около 50 кГц. Подбор стоит начать с конденсатора 1 нФ и резистора 100 кОм.

R4 — Эти резисторы в разных плечах — разные. Дело в том, что для получения синусоидального напряжения со сдвигом фаз на 120 гр. используется фазосдвигающая цепь. Кроме сдвигания она еще и ослабляет сигнал. Каждое звено ослабляет сигнал в 2.7 раза. Так что подбираем резистор в нижнем плече в диапазоне от 10 кОм до 100 кОм так, чтобы ШИМ контролер при минимальном значении синусоидального напряжения (с выхода операционного усилителя) был закрыт, при небольшом его увеличении начинал выдавать короткие импульсы, при достижении максимума был практически открыт. Резистор среднего плеча будет в 9 раза больше, резистор верхнего — в 81 раз.

После подбора этих резисторов более точно коэффициент усиления можно регулировать подстроечными резисторами R1.

R17 — 300 кОм, R18 — 30 кОм

C8 — 100нФ. Это могут быть низковольтные конденсаторы. На них высокого напряжения не бывает, хотя они стоят в высоковольтной части.

R22 — 0.23 Ом. 5Вт.

VD11 — Диоды Шоттки. Выбраны диоды Шоттки, чтобы обеспечить минимальное падение напряжения на диоде в открытом состоянии.

R23, R24 — 20 Ом. 1Вт.

L1 — дроссель 10мГн (1E-02 Гн), на ток 5А, C12 — 1мкФ, 400 В.

L2 — несколько витков тонкого провода поверх дросселя L1. Если в дросселе L1 — X витков, то в катушке L2 должно быть [X] / [60]

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector